数据治理数据适用、加工活动
数据处理活动需要具备明确的目的,并被用户授权;
处理生物识别、健康、金融账户、行踪轨迹等敏感个人信息,应取得个人的单独同意;
通过自动化决策方式向个人进行信息推送、商业营销,应提供不针对其个人特征的选项或提供便捷的拒绝方式。
数据传输、提供、公开活动
未经用户授权,数据信息不得向第三方传输和提供;
数据信息特定目的适用,未经授权不得不公开;数据信息不得泄露的原则。
数据治理让数据更安全
这是一个很现实也很棘手的问题。大家都知道数据安全的重要性,都要做数据安全,也知道数据安全的几种思路方法,然而真正要做的时候,却发现根本无从下手,只能参考其它同类企业,人家采购了什么,自己就采购什么,或者监管机构要求做什么,就采购什么。至于数据安全软件买来怎么用,或者究竟能派上多大用场,没人能说得清。其实,造成这种局面的本质原因就是企业对自身的数据缺乏认知,解决了数据认知问题,数据安全的落地便是水到渠成的了。所以,与其谈论该如何做数据安全,不如谈谈该如何提升数据认知能力。
数据治理方法
自动调度:系统内包含自动调度器自动执行测试数据抽取以及脱敏工作,减少人工干预。性能优化:通过多任务、多线程、分批处理等技术实现脱敏的。完善的用户权限管理:系统具备完善的用户权限管理策略,可以针对不同角色、不同用户、不同操作系统进行权限设置,从而实现更为细粒度的权限管理。异构环境支持:同一平台支持异构数据库、应用程序和IT环境。自定义算法:系统支持各类加密、或基于各类复杂业务的DB或JAVA的自定义算法。