应用案例编辑 播报缺陷检测系统应用的有金属表面、玻璃表面、纸张表面、电子元器件表面等对外观有严格要求又有明确指标的物品。
光学字符验证,简称OCV,是一种用于检查光学字符识别(OCR)字符串的打印或标记质量并确认其易辨识性的机器视觉软件工具 。该技术除了可以检查所呈现的字符串内容是否正确,还可以检查字符串的质量、对比度和清晰度,并对品质不合格的样品进行标记或剔除。中文名字符检测别名OCR常用名OCV检测常见的字符数字、英文字母、符号。
字符检测,又叫OCR或OCV检测,是专门对各种电子元器件、手机键盘、电脑键盘等物品表面上印刷或雕刻的字符进行识别和检测,常见的字符包括数字、英文字母、符号、汉字等。目前国内外不少研究机器视觉的企业开发了相应的检测软件,进行简单设定后,即可对被检测字符自动识别、检测,如有异常发生,可提示报警或者控制机器停机。对不符合要求的工件检测后可输出控制信号,剔除不合格品,自能化程度相当高。技术参数科技新型研发瑕疵检测系统,公司所开发软体功能涵盖了图形对比、瑕疵辨识、字元辨识、条形码辨识,几乎包含影像处理的所有项目,可以满足客户的需求。条形码辨识可以辨识许多类型条形码,且不因拍摄角度变形而无法辨识,能回馈数据给使用者了解读取条形码是否为所需信息。图形对比系统图形对比可以考虑客户需求调整对比度,达到完全客制化目标调整产品灵活度,对比图片的颜色筛检能达到快速批量检测。目标定位是计算机视觉领域中基本的任务之一,同时它也是和传统意 义上缺陷检测接近的任务,其期的是获
得目标的位置和类别信息。目前, 基于深度学习的目标检测方法层出不穷,-般来说, 基于深度学习的缺陷
检测网络从结构.上可以划分为:以Faster R-CNN为代表的两阶段(two stage)网络和以SSD或YOLO为代表的一
阶段(one stage)网络。两者的主要差异在于两阶段网络需要首先生成可能包含缺陷的候选框(proal),然后在
进一步进行目标检测。-阶段网络直接利用网络中提取的特征来预测缺陷的位置和类别。