溅射靶材开裂原因生产中使用的冷却水温度与镀膜线实际水温存在差异,导致使用过程中靶材开裂。一般来说,轻微的裂纹不会对镀膜生产产生很大的影响。但当靶材有明显裂纹时,电荷很容易集中在裂纹边缘,导致靶材表面异常放电。放电会导致落渣、成膜异常、产品报废增加。陶瓷或脆性材料靶材始终含有固有应力。这些内应力是在靶材制造发展过程中可以产生的。此外,这些应力不会被退火过程完全消除,因为这是这些材料的固有特性。在溅射过程中,气体离子被轰击以将它们的动量传递给目标原子,提供足够的能量使其从晶格中逃逸。这种放热动量转移使靶材温度升高,在原子水平上可能达到极高的温度。这些热冲击将靶材中已经发展存在的内应力将会增加到许多倍。在这种情况下,如果不适当散热,靶材就可能会断裂。二、溅射靶材开裂应对事项为了防止靶材开裂,需要着重考虑的是散热。需要水冷却机构以从靶去除不需要的热能。另一个需要考虑的问题是功率的增加。短时间内施加过大的功率也会对目标造成热冲击。此外,我们建议将靶材粘合到背板上,这不仅为靶材提供了支撑,而且促进了靶材与水之间更好的热交换。如果目标有一个裂纹,但它是粘接到背板上,仍可以正常使用。陕西智能玻璃陶瓷靶材多少钱冷等静压法制备ITO靶材优点。
研究直流磁控反应溅射ITO膜过程中ITO靶材的毒化现象,用XRD、EPMA、LECO测氧仪等手段对毒化发生的机理进行分析,并对若干诱导因素进行讨论,研究表明ITO靶材毒化是由于In2O3。主相分解为In2O造成的,靶材性能及溅射工艺缺陷都可能诱导毒化发生.ITO薄膜作为一种重要的透明导电氧化物半导体材料,因具有良好的导电性能及光透射率广泛应用于液晶显示、太阳能电池、静电屏蔽、电致发光等技术中,用氧化铟+氧化锡烧结体作为靶材,直流磁控反应溅射法制备ITO薄膜与用铟锡合金靶相比,具有沉积速度快,膜质优良,工艺易控等优点成为目前的主流?但是,此法成膜过程中会经常发生ITO靶材表面黑色化,生成黑色不规则球状节瘤,本文称此现象为靶材毒化,毒化使溅射速率下降,膜质劣化,迫使停机清理靶材表面后才能继续正常溅射,严重影响了镀膜效率。
主要PVD方法的特点:(3)溅射镀膜:在溅射镀膜过程中,溅射靶材需要安装在机台中完成溅射反应,溅射机台专业性强、精密度高,市场长期被美国、日本跨国集团垄断。(4)终端应用:1)半导体芯片:单元器件中的介质层、导体层与保护层需要钽、钨、铜、铝、钛等金属。2)平板显示器件:为了保证大面积膜层的均匀性,提高生产率和降低成本,溅射技术镀膜需要钼、铝、ITO等材料;3)薄膜太阳能电池一一第三代,溅射镀膜工艺是被优先选用的制备方法,靶材是不可或缺的原材料;4)计算机储存器:磁信息存储、磁光信息存储和全光信息存储等。在光盘、机械硬盘等记录媒体,需要用铬基、钴基合金等金属材料。ITO靶材中氧化铟:氧化锡的配比分为90:10,93:7,95:5, 97:3, 99:1。