内燃机的支承
内燃机的支承随其用途不同而各异,固定式内燃机(如发电机组用内燃机、工程机械用内燃机等),多用机体上的四个支承点刚性地固定在机座或其他重量较重的基础上,以降低由于内燃机固有的不平衡性引起的振动。
3.1.2汽缸体与汽缸盖检修技能
汽缸体和汽缸盖的常见失效形式有:不同位置的裂纹、平面变形、水道口腐蚀和螺孔损坏等。本节将分别讨论这几种失效形式产生的原因、检验及修理方法。
3.1.2.1裂纹的检验与修理
汽缸体和汽缸盖裂纹会导致冷却液或机油泄漏,影响内燃机的工作,甚至造成汽缸体或汽缸盖报废。
(1)裂纹产生的原因
汽缸体与汽缸盖产生裂纹的部位往往与它们的结构有关,不同形式的发动机出现裂纹的部位有它一定的规律性。总体说来,裂纹产生的原因不外乎以下三个方面。
①设计和制造方面的缺陷
a.一些改进型发动机是强化机型,其转速和功率较原发动机显著提高,在高转速下,发动机受到的惯性力和应力也增大,易出现裂纹。
b.汽缸体结构复杂,各处壁厚不均匀,在一些薄弱部位,刚度低,易出现裂纹。
c.加工部位与未加工部位,壁厚不同部位过渡处都将产生应力集中,当这些应力与铸造时的残余应力叠加时,也易产生裂纹。
②使用不当
a.在寒冷冬季,没使用防冻液或停机后没按照规定时间(冷却水冷却至常温)放出冷却水,致使水套内的冷却水结冰而发生冻裂,或在严寒冬季,骤加高温热水而炸裂。
b.在内燃机处于高温工作状况下突然加入冷水,造成汽缸体和汽缸盖热应力过大,致使汽缸体和汽缸盖产生裂纹。
c.在拆装或搬运中不慎,使汽缸体或汽缸盖严重受振或碰撞而产生裂纹。内燃机在运转过程中,材料受到过高的热应力。比如,长时间超负荷工作,造成汽缸体内应力增大;①止推片轴向定位,凸轮轴止推片用螺钉固定在汽缸体上,止推片与正时齿轮之间应留有适当的间隙,此间隙的大小通常为0。水套中的水垢过厚,减少了冷却水的通过面积,而且水垢的传热性差,降低了发动机的散热性能,特别是汽缸之间、气门座之间以及进、排气孔附近的水道被阻塞后,将严重影响散抹使局部工作温度升高,热应力过大,以致产生裂纹。
d.在没有充分暖机的情况下,迅速增加负荷,致使汽缸体和汽缸盖冷热变化剧烈且不均匀,以致产生裂纹。
③修理质量不高在维修过程中,未能严格执行工艺要求,如汽缸盖螺母未能按规定顾序和力矩拧紧、拧紧力不均匀,用不符合规定的汽缸盖螺母等;在镶配气门座圈时,没有根据气门座的材料及加工精度等选用适当的压入过盈量等,也会使其产生裂纹。
拧紧汽缸盖螺母要用读数准确的扭力扳手,按先中间后两边,分2~3次(如135系列柴油机汽缸盖螺母的规定力矩为245~265N·m,一次可拧到100N·m;第二次可拧到200N·m;②锤击法先清除黏附在曲轴表面上的油污,然后用煤油或柴油浸洗整个曲轴,再取出曲轴将其抹拭干净,后将曲轴的两端支撑在木架上,用小手锤轻轻敲击每道曲轴臂。第三次可拧到规定力矩)对称地拧紧到规定的力矩。对重装汽缸盖的发动机在一次走热,冷却至常温后,还需按上述要求再拧一次汽缸盖螺母以达到规定力矩,并应重新调整一次气门间隙。
拆卸汽缸盖螺母的顺序与上述顺序刚好相反,按先两边后中间的顺序,分2~3次对称地拧松。千万不要为了方便,一次性地把所有螺母卸掉。
增压方法
按照驱动增压器所用能量来源的不同,基本的增压方法可分为三类:机械增压系统、废气涡轮增压系统和复合增压系统三类。除了利用上述三种方法来提高汽缸的空气压力外,还有利用进排气管内的气体动力效应来提高汽缸充气效率的惯性增压系统以及利用进排气的压力交换来提高汽缸空气压力的气波增压器。柴油机驱动其他工作机械(如发电机、水泵等)时,如其输出转矩与工作机械克服工作阻力所需的转矩(阻力矩)相等,则工作处于稳定状态(转速基本稳定)。
(1)机械增压系统
增压器(压气机)由柴油机直接驱动的增压方式称为机械增压系统。它由柴油机的曲轴通过齿轮、皮带或链条等传动装置带动增压器旋转。增压器通常采用离心式压气机或罗茨压气机。空气经压缩提高其压力后,再送入汽缸。
由于机械增压系统压气机所消耗的功率是由曲轴提供的,当增压压力较高时,所耗的驱动功率也会很大,使整机的机械效率下降。因此,机械增压系统通常只适用于增压压力不超过160~170kPa的低增压小功率柴油机。
废气涡轮增压是利用柴油机排出的废气能量来驱动增压器,将空气压缩后再送入汽缸的一种增压方法。柴油机采用废气涡轮增压后,可提高输出功率30%~100%以上,同时还可减少单位功率的质量,缩小外形尺寸,节省原材料,降低燃油消耗率,增大柴油机扭矩,提高载荷能力以及减少排气对大气的污染等优点,因而得到广泛应用。尤其在高原地区,因气压低、空气稀薄,导致输出功率下降,一般当海拔高度每升高1000m,功率将下降8%~10%。若装设涡轮增压器后,可以恢复原输出功率,其经济效果尤为显著。气门间隙发动机工作时,气门、推杆、挺柱等零件因温度升高而伸长。
供油量的调节
喷油泵向喷油器供给的柴油量主要取决于柱塞的有效行程和柱塞的直径,其数值等于柱塞开始压油时,回油孔处斜槽的下边缘至回油孔下边缘的距离。此距离愈长,有效行程愈长,则供油量愈大,而这一距离的长短则可通过转动柱塞加以改变。油量控制机构就是根据柴油机负荷的大小,转动柱塞来调节供油量,使其与负荷相适应。若轴瓦合金为铝基合金(俗称铝瓦),能转动2、3圈,同时再握住连杆小端,沿曲轴轴线方向拨动,应没有松旷感觉即为合适。
油量控制机构有两种形式:齿杆式和拨叉式。
①齿杆式油量控制机构目前应用广泛。柱塞下端有条状凸块伸入套筒的缺口内,套筒则松套在柱塞套筒的外面。套筒的上部用固紧螺钉锁紧一个可调齿圈,可调齿圈与齿杆相啮合。移动齿杆即可改变供油量。当需要调整某缸供油量时,先松开可调齿圈的固紧螺钉,然后转动套筒,带动柱塞相对于齿圈转动一定角度,再将齿圈固定即可。在上止点附近,进、排气门同时开启的角度称为气门重叠角(以℃A表示)。这种油量控制机构传动平稳、工作可靠,但结构较复杂。
②拨叉式油量控制机构主要由供油拉5、调节叉和调节臂等组成。当供油拉杆移动时,固定在拉杆上的调节叉随即拨动调节臂,使柱塞随之一起转动,从而改变供油量。柱塞仅转动很小角度就能使供油量改变很大,因此拨叉式油量控制机构对供油量的调节十分灵敏。其结构简单、制造容易,适用于中小型柴油机。若两只体与中间壳配合较紧时,可用橡胶或木质槌沿壳体四周轻轻敲打,取下壳体时要细心,不能使壳体在轴线方向上产生倾斜,以免碰上压气机及涡轮叶片的部分或碰毛壳体相应的内侧表面。
在柱塞直径一定时,有效行程愈长,供油量愈大,喷油延续时间愈长。喷油延续时间过长,则会由于后期喷入的燃料不能充分燃烧而使柴油机性能恶化。因此,供油量较大的柴油机,必须选用较大的柱塞直径。
对于多缸喷油泵,如各缸的供油量不一致时,必须进行调整。调整的方法因结构不同而异。如采用拨叉式油量控制机构,则可通过改变调节叉在拉杆上的位置来调整供油量。
以上就是关于云南NTA855-G2康明斯柴油发电机服务介绍 康明斯OEM代理商奇异果和猕猴桃全部的内容,关注我们,带您了解更多相关内容。